Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.429
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732056

The involvement of the second pair of chlorophylls, termed A-1A and A-1B, in light-induced electron transfer in photosystem I (PSI) is currently debated. Asparagines at PsaA600 and PsaB582 are involved in coordinating the A-1B and A-1A pigments, respectively. Here we have mutated these asparagine residues to methionine in two single mutants and a double mutant in PSI from Synechocystis sp. PCC 6803, which we term NA600M, NB582M, and NA600M/NB582M mutants. (P700+-P700) FTIR difference spectra (DS) at 293 K were obtained for the wild-type and the three mutant PSI samples. The wild-type and mutant FTIR DS differ considerably. This difference indicates that the observed changes in the (P700+-P700) FTIR DS cannot be due to only the PA and PB pigments of P700. Comparison of the wild-type and mutant FTIR DS allows the assignment of different features to both A-1 pigments in the FTIR DS for wild-type PSI and assesses how these features shift upon cation formation and upon mutation. While the exact role the A-1 pigments play in the species we call P700 is unclear, we demonstrate that the vibrational modes of the A-1A and A-1B pigments are modified upon P700+ formation. Previously, we showed that the A-1 pigments contribute to P700 in green algae. In this manuscript, we demonstrate that this is also the case in cyanobacterial PSI. The nature of the mutation-induced changes in algal and cyanobacterial PSI is similar and can be considered within the same framework, suggesting a universality in the nature of P700 in different photosynthetic organisms.


Mutation , Photosystem I Protein Complex , Synechocystis , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/genetics , Spectroscopy, Fourier Transform Infrared/methods , Synechocystis/genetics , Synechocystis/metabolism , Chlorophyll/metabolism , Electron Transport/genetics , Chlorophyll A/metabolism
2.
J Hazard Mater ; 471: 134373, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38678710

The cyanobacterial response to pharmaceuticals is less frequently investigated compared to green algae. Pharmaceuticals can influence not only the growth rate of cyanobacteria culture, but can also cause changes at the cellular level. The effect of diclofenac (DCF) as one of the for cyanobacteria has been rarely tested, and DCF has never been applied with cellular biomarkers. The aim of this work was to test the response of two unicellular cyanobacteria (Synechocystis salina and Microcystis aeruginosa) toward DCF (100 mg L-1) under photoautotrophic growth conditions. Such endpoints were analyzed as cells number, DCF uptake, the change in concentrations of photosynthetic pigments, the production of toxins, and chlorophyll a in vivo fluorescence. It was noted that during a 96 h exposure, cell proliferation was not impacted. Nevertheless, a biochemical response was observed. The increased production of microcystin was noted for M. aeruginosa. Due to the negligible absorption of DCF into cells, it is possible that the biochemical changes are induced by an external signal. The application of non-standard biomarkers demonstrates the effect of DCF on microorganism metabolism without a corresponding effect on biomass. The high resistance of cyanobacteria to DCF and the stimulating effect of DCF on the secretion of toxins raise concerns for environment biodiversity.


Biomarkers , Chlorophyll A , Diclofenac , Microcystis , Synechocystis , Microcystis/drug effects , Microcystis/metabolism , Microcystis/growth & development , Diclofenac/toxicity , Diclofenac/metabolism , Biomarkers/metabolism , Synechocystis/metabolism , Synechocystis/drug effects , Synechocystis/growth & development , Chlorophyll A/metabolism , Microcystins/metabolism , Chlorophyll/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Photosynthesis/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology
3.
Sci Rep ; 14(1): 9640, 2024 04 26.
Article En | MEDLINE | ID: mdl-38671026

Photoautotrophic cyanobacteria assimilate the greenhouse gas carbon dioxide as their sole carbon source for producing useful bioproducts. However, harvesting the cells from their liquid media is a major bottleneck in the process. Thus, an easy-to-harvest method, such as auto-flocculation, is desirable. Here, we found that cyanobacterium Synechocystis sp. PCC 6803 co-flocculated with a natural fungal contamination in the presence of the antibiotic erythromycin (EM) but not without EM. The fungi in the co-flocculated biomass were isolated and found to consist of five species with the filamentous Purpureocillium lilacinum and Aspergillus protuberus making up 71% of the overall fungal population. The optimal co-cultivation for flocculation was an initial 5 mg (fresh weight) of fungi, an initial cell density of Synechocystis of 0.2 OD730, 10 µM EM, and 14 days of cultivation in 100 mL of BG11 medium with no organic compound. This yielded 248 ± 28 mg/L of the Synechocystis-fungi flocculated biomass from 560 ± 35 mg/L of total biomass, a 44 ± 2% biomass flocculation efficiency. Furthermore, the EM treated Synechocystis cells in the Synechocystis-fungi flocculate had a normal cell color and morphology, while those in the axenic suspension exhibited strong chlorosis. Thus, the occurrence of the Synechocystis-fungi flocculation was mediated by EM, and the co-flocculation with the fungi protected Synechocystis against the development of chlorosis. Transcriptomic analysis suggested that the EM-mediated co-flocculation was a result of down-regulation of the minor pilin genes and up-regulation of several genes including the chaperone gene for pilin regulation, the S-layer protein genes, the exopolysaccharide-polymerization gene, and the genes for signaling proteins involved in cell attachment and abiotic-stress responses. The CuSO4 stress can also mediate Synechocystis-fungi flocculation but at a lower flocculation efficiency than that caused by EM. The EM treatment may be applied in the co-culture between other cyanobacteria and fungi to mediate cell bio-flocculation.


Erythromycin , Flocculation , Synechocystis , Synechocystis/metabolism , Synechocystis/genetics , Erythromycin/pharmacology , Biomass , Coculture Techniques , Fungi/metabolism , Fungi/genetics
4.
Sci Rep ; 14(1): 7885, 2024 04 03.
Article En | MEDLINE | ID: mdl-38570698

SbtB is a PII-like protein that regulates the carbon-concentrating mechanism (CCM) in cyanobacteria. SbtB proteins can bind many adenyl nucleotides and possess a characteristic C-terminal redox sensitive loop (R-loop) that forms a disulfide bridge in response to the diurnal state of the cell. SbtBs also possess an ATPase/ADPase activity that is modulated by the redox-state of the R-loop. To investigate the R-loop in the cyanobacterium Synechocystis sp. PCC 6803, site-specific mutants, unable to form the hairpin and permanently in the reduced state, and a R-loop truncation mutant, were characterized under different inorganic carbon (Ci) and light regimes. Growth under diurnal rhythm showed a role of the R-loop as sensor for acclimation to changing light conditions. The redox-state of the R-loop was found to impact the binding of the adenyl-nucleotides to SbtB, its membrane association and thereby the CCM regulation, while these phenotypes disappeared after truncation of the R-loop. Collectively, our data imply that the redox-sensitive R-loop provides an additional regulatory layer to SbtB, linking the CO2-related signaling activity of SbtB with the redox state of cells, mainly reporting the actual light conditions. This regulation not only coordinates CCM activity in the diurnal rhythm but also affects the primary carbon metabolism.


Carbon , Synechocystis , Carbon/metabolism , R-Loop Structures , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Nucleotides/metabolism , Oxidation-Reduction , Carbon Dioxide/metabolism , Photosynthesis
5.
Bioresour Technol ; 400: 130664, 2024 May.
Article En | MEDLINE | ID: mdl-38583672

Synechocystis sp. PCC 6803 (Synechocystis) is a unicellular photosynthetic microorganism that has been used as a model for photo-biochemical research. It comprises a potential cell factory for the generation of valuable bioactive compounds, therapeutic proteins, and possibly biofuels. Fusion constructs of recombinant proteins with the CpcA α-subunit or CpcB ß-subunit of phycocyanin in Synechocystis have enabled true over-expression of several isoprenoid pathway enzymes and biopharmaceutical proteins to levels of 10-20 % of the total cellular protein. The present work employed the human interferon α-2 protein, as a study case of over-expression and downstream processing. It advanced the state of the art in the fusion constructs for protein overexpression technology by developing the bioresource for target protein separation from the fusion construct and isolation in substantially enriched or pure form. The work brings the cyanobacterial cell factory concept closer to meaningful commercial application for the photosynthetic production of useful recombinant proteins.


Recombinant Proteins , Synechocystis , Synechocystis/metabolism , Humans , Recombinant Proteins/metabolism , Interferon-alpha/metabolism , Interferon alpha-2 , Protein Biosynthesis
6.
Nat Commun ; 15(1): 1911, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429292

When the supply of inorganic carbon is limiting, photosynthetic cyanobacteria excrete nitrite, a toxic intermediate in the ammonia assimilation pathway from nitrate. It has been hypothesized that the excreted nitrite represents excess nitrogen that cannot be further assimilated due to the missing carbon, but the underlying molecular mechanisms are unclear. Here, we identified a protein that interacts with nitrite reductase, regulates nitrogen metabolism and promotes nitrite excretion. The protein, which we named NirP1, is encoded by an unannotated gene that is upregulated under low carbon conditions and controlled by transcription factor NtcA, a central regulator of nitrogen homeostasis. Ectopic overexpression of nirP1 in Synechocystis sp. PCC 6803 resulted in a chlorotic phenotype, delayed growth, severe changes in amino acid pools, and nitrite excretion. Coimmunoprecipitation experiments indicated that NirP1 interacts with nitrite reductase, a central enzyme in the assimilation of ammonia from nitrate/nitrite. Our results reveal that NirP1 is widely conserved in cyanobacteria and plays a crucial role in the coordination of C/N primary metabolism by targeting nitrite reductase.


Nitrites , Synechocystis , Nitrites/metabolism , Nitrates/metabolism , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Ammonia/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Synechocystis/genetics , Synechocystis/metabolism , Nitrogen/metabolism , Carbon/metabolism , Nitrate Reductase/genetics , Nitrate Reductase/metabolism
7.
Plant Mol Biol ; 114(2): 27, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38478146

Cyanobacteria are oxygen-evolving photosynthetic prokaryotes that affect the global carbon and nitrogen turnover. Synechocystis sp. PCC 6803 (Synechocystis 6803) is a model cyanobacterium that has been widely studied and can utilize and uptake various nitrogen sources and amino acids from the outer environment and media. l-arginine is a nitrogen-rich amino acid used as a nitrogen reservoir in Synechocystis 6803, and its biosynthesis is strictly regulated by feedback inhibition. Argininosuccinate synthetase (ArgG; EC 6.3.4.5) is the rate-limiting enzyme in arginine biosynthesis and catalyzes the condensation of citrulline and aspartate using ATP to produce argininosuccinate, which is converted to l-arginine and fumarate through argininosuccinate lyase (ArgH). We performed a biochemical analysis of Synechocystis 6803 ArgG (SyArgG) and obtained a Synechocystis 6803 mutant overexpressing SyArgG and ArgH of Synechocystis 6803 (SyArgH). The specific activity of SyArgG was lower than that of other arginine biosynthesis enzymes and SyArgG was inhibited by arginine, especially among amino acids and organic acids. Both arginine biosynthesis enzyme-overexpressing strains grew faster than the wild-type Synechocystis 6803. Based on previous reports and our results, we suggest that SyArgG is the rate-limiting enzyme in the arginine biosynthesis pathway in cyanobacteria and that arginine biosynthesis enzymes are similarly regulated by arginine in this cyanobacterium. Our results contribute to elucidating the regulation of arginine biosynthesis during nitrogen metabolism.


KEY MESSAGE: This study revealed the catalytic efficiency and inhibition of cyanobacterial argininosuccinate synthetase by arginine and demonstrated that a strain overexpressing this enzyme grew faster than the wild-type strain.


Synechocystis , Synechocystis/genetics , Synechocystis/metabolism , Aspartic Acid/metabolism , Arginine/metabolism , Photosynthesis , Nitrogen/metabolism
8.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38474026

Photosynthetic organisms have established photoprotective mechanisms in order to dissipate excess light energy into heat, which is commonly known as non-photochemical quenching. Cyanobacteria utilize the orange carotenoid protein (OCP) as a high-light sensor and quencher to regulate the energy flow in the photosynthetic apparatus. Triggered by strong light, OCP undergoes conformational changes to form the active red state (OCPR). In many cyanobacteria, the back conversion of OCP to the dark-adapted state is assisted by the fluorescence recovery protein (FRP). However, the exact molecular events involving OCP and its interaction with FRP remain largely unraveled so far due to their metastability. Here, we use small-angle neutron scattering combined with size exclusion chromatography (SEC-SANS) to unravel the solution structures of FRP-OCP complexes using a compact mutant of OCP lacking the N-terminal extension (∆NTEOCPO) and wild-type FRP. The results are consistent with the simultaneous presence of stable 2:2 and 2:1 FRP-∆NTEOCPO complexes in solution, where the former complex type is observed for the first time. For both complex types, we provide ab initio low-resolution shape reconstructions and compare them to homology models based on available crystal structures. It is likely that both complexes represent intermediate states of the back conversion of OCP to its dark-adapted state in the presence of FRP, which are of transient nature in the photocycle of wild-type OCP. This study demonstrates the large potential of SEC-SANS in revealing the solution structures of protein complexes in polydisperse solutions that would otherwise be averaged, leading to unspecific results.


Cyanobacteria , Synechocystis , Light , Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Photosynthesis , Chromatography, Gel , Synechocystis/metabolism
9.
Pestic Biochem Physiol ; 199: 105769, 2024 Feb.
Article En | MEDLINE | ID: mdl-38458678

The discovery of safe, effective, and selective chemical algicides is the stringent need for the algicides development, and it is also one of the effective routes to control cyanobacteria harmful algal blooms and to meet the higher requirements of environmental and ecological. In this work, a series of novel bromo-N-phenyl-5-o-hydroxyphenylpyrazole-3-carboxyamides were rationally designed as pseudilin analogs by bioisosteric replacement and molecular hybridization strategies, in which the pyrrole unit of pseudilin was replaced with pyrazole and further combined with the dominant structural fragments of algicide diuron. The synthesis was carried out by a facile four-step routeincluding cyclization, amidation, transanulation, and halogenation. The biological activity evaluation on AtIspD, EcIspD, Synechocystis sp. PCC6803 and Microcystis aeruginosa FACHB905 revealed that most compounds had good EcIspD and excellent cyanobacteria inhibitory activity. In particular, compound 6bb exhibited potent algicidal activity against PCC6803 and FACHB905 with EC50 = 1.28 µM and 0.37 µM, respectively, 1.4-fold and 4.0-fold enhancement compared to copper sulfate (EC50 = 1.79 and 1.49 µM, respectively), and it also showed the best inhibitory activity of EcIspD. The binding of 6bb to EcIspD was explored by molecular docking, and it was confirmed that 6bb could bind to the EcIspD active site. Compound 6bb was proven to be a potential structure for the further development of novel algicides that targets IspD in the MEP pathway.


Herbicides , Microcystis , Synechocystis , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Synechocystis/chemistry , Synechocystis/metabolism , Herbicides/pharmacology
10.
J Proteome Res ; 23(4): 1174-1187, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38427982

Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.


Photosynthesis , Synechocystis , Photosynthesis/genetics , Synechocystis/genetics , Synechocystis/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Phycocyanin/metabolism
11.
Photosynth Res ; 160(1): 17-29, 2024 Apr.
Article En | MEDLINE | ID: mdl-38407779

Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.


Photosynthetic Reaction Center Complex Proteins , Synechocystis , Phycobilisomes/metabolism , Synechocystis/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Bacterial Proteins/metabolism , Spectrometry, Fluorescence
12.
Metab Eng ; 82: 171-182, 2024 Mar.
Article En | MEDLINE | ID: mdl-38395194

Metabolic fluxes and their control mechanisms are fundamental in cellular metabolism, offering insights for the study of biological systems and biotechnological applications. However, quantitative and predictive understanding of controlling biochemical reactions in microbial cell factories, especially at the system level, is limited. In this work, we present ARCTICA, a computational framework that integrates constraint-based modelling with machine learning tools to address this challenge. Using the model cyanobacterium Synechocystis sp. PCC 6803 as chassis, we demonstrate that ARCTICA effectively simulates global-scale metabolic flux control. Key findings are that (i) the photosynthetic bioproduction is mainly governed by enzymes within the Calvin-Benson-Bassham (CBB) cycle, rather than by those involve in the biosynthesis of the end-product, (ii) the catalytic capacity of the CBB cycle limits the photosynthetic activity and downstream pathways and (iii) ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a major, but not the most, limiting step within the CBB cycle. Predicted metabolic reactions qualitatively align with prior experimental observations, validating our modelling approach. ARCTICA serves as a valuable pipeline for understanding cellular physiology and predicting rate-limiting steps in genome-scale metabolic networks, and thus provides guidance for bioengineering of cyanobacteria.


Photosynthesis , Synechocystis , Photosynthesis/physiology , Metabolic Networks and Pathways/genetics , Synechocystis/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism
13.
Biochem Biophys Res Commun ; 702: 149595, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38340653

The Photosystem II water-plastoquinone oxidoreductase is a multi-subunit complex which catalyses the light-driven oxidation of water to molecular oxygen in oxygenic photosynthesis. The D1 reaction centre protein exists in multiple forms in cyanobacteria, including D1FR which is expressed under far-red light. We investigated the role of Phe184 that is found in the lumenal cd-loop of D1FR but is typically an isoleucine in other D1 isoforms. The I184F mutant in Synechocystis sp. PCC 6803 was similar to the control strain but accumulated a spontaneous mutation that introduced a Gln residue in place of His252 located on the opposite side of the thylakoid membrane. His252 participates in the protonation of the secondary plastoquinone electron acceptor QB. The I184F:H252Q double mutant exhibited reduced high-light-induced photodamage and an altered QB-binding site that impaired herbicide binding. Additionally, the H252Q mutant had a large increase in the variable fluorescence yield although the number of photochemically active PS II centres was unchanged. In the I184F:H252Q mutant the extent of the increased fluorescence yield decreased. Our data indicates substitution of Ile184 to Phe modulates PS II-specific variable fluorescence in cells with the His252 to Gln substitution by modifying the QB-binding site.


Photosystem II Protein Complex , Synechocystis , Photosystem II Protein Complex/chemistry , Synechocystis/genetics , Synechocystis/metabolism , Plastoquinone/chemistry , Plastoquinone/metabolism , Mutagenesis , Oxygen/metabolism , Mutation , Water/metabolism
14.
Plant J ; 118(4): 1207-1217, 2024 May.
Article En | MEDLINE | ID: mdl-38319793

CpcL-phycobilisomes (CpcL-PBSs) are a reduced type of phycobilisome (PBS) found in several cyanobacteria. They lack the traditional PBS terminal energy emitters, but still show the characteristic red-shifted fluorescence at ~670 nm. We established a method of assembling in vitro a rod-membrane linker protein, CpcL, with phycocyanin, generating complexes with the red-shifted spectral features of CpcL-PBSs. The red-shift arises from the interaction of a conserved key glutamine, Q57 of CpcL in Synechocystis sp. PCC 6803, with a single phycocyanobilin chromophore of trimeric phycocyanin at one of the three ß82-sites. This chromophore is the terminal energy acceptor of CpcL-PBSs and donor to the photosystem(s). This mechanism also operates in PBSs from Acaryochloris marina MBIC11017. We then generated multichromic complexes harvesting light over nearly the complete visible range via the replacement of phycocyanobilin chromophores at sites α84 and ß153 of phycocyanins by phycoerythrobilin and/or phycourobilin. The results demonstrate the rational design of biliprotein-based light-harvesting elements by engineering CpcL and phycocyanins, which broadens the light-harvesting range and accordingly improves the light-harvesting capacity and may be potentially applied in solar energy harvesting.


Bacterial Proteins , Phycobilins , Phycobilisomes , Phycocyanin , Synechocystis , Phycobilisomes/metabolism , Phycocyanin/metabolism , Phycocyanin/chemistry , Synechocystis/metabolism , Bacterial Proteins/metabolism , Phycobilins/metabolism , Phycobilins/chemistry , Cyanobacteria/metabolism
15.
Microb Cell Fact ; 23(1): 57, 2024 Feb 18.
Article En | MEDLINE | ID: mdl-38369470

BACKGROUND: Phenylpropanoids are a large group of plant secondary metabolites with various biological functions, derived from aromatic amino acids. Cyanobacteria are promising host organisms for sustainable production of plant phenylpropanoids. We have previously engineered Synechocystis sp. PCC 6803 to produce trans-cinnamic acid (tCA) and p-coumaric acid (pCou), the first intermediates of phenylpropanoid pathway, by overexpression of phenylalanine- and tyrosine ammonia lyases. In this study, we aimed to enhance the production of the target compounds tCA and pCou in Synechocystis. RESULTS: We eliminated the 4-hydroxyphenylpyruvate dioxygenase (HPPD) activity, which is a competing pathway consuming tyrosine and, possibly, phenylalanine for tocopherol synthesis. Moreover, several genes of the terminal steps of the shikimate pathway were overexpressed alone or in operons, such as aromatic transaminases, feedback insensitive cyclohexadienyl dehydrogenase (TyrC) from Zymomonas mobilis and the chorismate mutase (CM) domain of the fused chorismate mutase/prephenate dehydratase enzyme from Escherichia coli. The obtained engineered strains demonstrated nearly 1.5 times enhanced tCA and pCou production when HPPD was knocked out compared to the parental production strains, accumulating 138 ± 3.5 mg L-1 of tCA and 72.3 ± 10.3 mg L-1 of pCou after seven days of photoautotrophic growth. However, there was no further improvement when any of the pathway genes were overexpressed. Finally, we used previously obtained AtPRM8 and TsPRM8 Synechocystis strains with deregulated shikimate pathway as a background for the overexpression of synthetic constructs with ppd knockout. CONCLUSIONS: HPPD elimination enhances the tCA and pCou productivity to a similar extent. The use of PRM8 based strains as a background for overexpression of synthetic constructs, however, did not promote tCA and pCou titers, which indicates a tight regulation of the terminal steps of phenylalanine and tyrosine synthesis. This work contributes to establishing cyanobacteria as hosts for phenylpropanoid production.


Synechocystis , Synechocystis/genetics , Synechocystis/metabolism , Metabolic Engineering , Shikimic Acid/metabolism , Tyrosine/metabolism , Phenylalanine/metabolism , Chorismate Mutase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
16.
J Microbiol Biotechnol ; 34(2): 407-414, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38247220

Phosphorus is an essential but non-renewable nutrient resource critical for agriculture. Luxury phosphorus uptake allows microalgae to synthesize polyphosphate and accumulate phosphorus, but, depending on the strain of algae, polyphosphate may be degraded within 4 hours of accumulation. We studied the recovery of phosphorus from wastewater through luxury uptake by an engineered strain of Synechocystis sp. with inhibited polyphosphate degradation and the effect of this engineered Synechocystis biomass on lettuce growth. First, a strain (ΔphoU) lacking the phoU gene, which encodes a negative regulator of environmental phosphate concentrations, was generated to inhibit polyphosphate degradation in cells. Polyphosphate concentrations in the phoU knock-out strain were maintained for 24 h and then decreased slowly. In contrast, polyphosphate concentrations in the wild-type strain increased up to 4 h and then decreased rapidly. In addition, polyphosphate concentration in the phoU knockout strain cultured in semi-permeable membrane bioreactors with artificial wastewater medium was 2.5 times higher than that in the wild type and decreased to only 16% after 48 h. The biomass of lettuce treated with the phoU knockout strain (0.157 mg P/m2) was 38% higher than that of the lettuce treated with the control group. These results indicate that treating lettuce with this microalgal biomass can be beneficial to crop growth. These results suggest that the use of polyphosphate-accumulating microalgae as biofertilizers may alleviate the effects of a diminishing phosphorous supply. These findings can be used as a basis for additional genetic engineering to increase intracellular polyphosphate levels.


Synechocystis , Wastewater , Synechocystis/genetics , Synechocystis/metabolism , Polyphosphates/metabolism , Phosphorus/metabolism , Bioreactors , Culture Media/metabolism
17.
Photosynth Res ; 159(2-3): 115-131, 2024 Mar.
Article En | MEDLINE | ID: mdl-37093503

Photosystem I from the menB strain of Synechocystis sp. PCC 6803 containing foreign quinones in the A1 sites was used for studying the primary steps of electron transfer by pump-probe femtosecond laser spectroscopy. The free energy gap (- ΔG) of electron transfer between the reduced primary acceptor A0 and the quinones bound in the A1 site varied from 0.12 eV for the low-potential 1,2-diamino-anthraquinone to 0.88 eV for the high-potential 2,3-dichloro-1,4-naphthoquinone, compared to 0.5 eV for the native phylloquinone. It was shown that the kinetics of charge separation between the special pair chlorophyll P700 and the primary acceptor A0 was not affected by quinone substitutions, whereas the rate of A0 → A1 electron transfer was sensitive to the redox-potential of quinones: the decrease of - ΔG by 400 meV compared to the native phylloquinone resulted in a ~ fivefold slowing of the reaction The presence of the asymmetric inverted region in the ΔG dependence of the reaction rate indicates that the electron transfer in photosystem I is controlled by nuclear tunneling and should be treated in terms of quantum electron-phonon interactions. A three-mode implementation of the multiphonon model, which includes modes around 240 cm-1 (large-scale protein vibrations), 930 cm-1 (out-of-plane bending of macrocycles and protein backbone vibrations), and 1600 cm-1 (double bonds vibrations) was applied to rationalize the observed dependence. The modes with a frequency of at least 1600 cm-1 make the predominant contribution to the reorganization energy, while the contribution of the "classical" low-frequency modes is only 4%.


Benzoquinones , Photosystem I Protein Complex , Synechocystis , Photosystem I Protein Complex/metabolism , Vitamin K 1/metabolism , Electron Transport , Quinones/metabolism , Synechocystis/metabolism , Kinetics
18.
Photosynth Res ; 159(2-3): 97-114, 2024 Mar.
Article En | MEDLINE | ID: mdl-37093504

Flavodiiron proteins Flv1/Flv3 accept electrons from photosystem (PS) I. In this work we investigated light adaptation mechanisms of Flv1-deficient mutant of Synechocystis PCC 6803, incapable to form the Flv1/Flv3 heterodimer. First seconds of dark-light transition were studied by parallel measurements of light-induced changes in chlorophyll fluorescence, P700 redox transformations, fluorescence emission at 77 K, and OCP-dependent fluorescence quenching. During the period of Calvin cycle activation upon dark-light transition, the linear electron transport (LET) in wild type is supported by the Flv1/Flv3 heterodimer, whereas in Δflv1 mutant activation of LET upon illumination is preceded by cyclic electron flow that maintains State 2. The State 2-State 1 transition and Orange Carotenoid Protein (OCP)-dependent non-photochemical quenching occur independently of each other, begin in about 10 s after the illumination of the cells and are accompanied by a short-term re-reduction of the PSI reaction center (P700+). ApcD is important for the State 2-State 1 transition in the Δflv1 mutant, but S-M rise in chlorophyll fluorescence was not completely inhibited in Δflv1/ΔapcD mutant. LET in Δflv1 mutant starts earlier than the S-M rise in chlorophyll fluorescence, and the oxidation of plastoquinol (PQH2) pool promotes the activation of PSII, transient re-reduction of P700+ and transition to State 1. An attempt to induce state transition in the wild type under high intensity light using methyl viologen, highly oxidizing P700 and PQH2, was unsuccessful, showing that oxidation of intersystem electron-transport carriers might be insufficient for the induction of State 2-State 1 transition in wild type of Synechocystis under high light.


Synechocystis , Electron Transport , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Oxidation-Reduction , Photosystem I Protein Complex/genetics , Photosystem I Protein Complex/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism
19.
Int J Biol Macromol ; 254(Pt 2): 127874, 2024 Jan.
Article En | MEDLINE | ID: mdl-37939760

The Orange Carotenoid Protein (OCP) is a unique photoreceptor crucial for cyanobacterial photoprotection. Best studied Synechocystis sp. PCC 6803 OCP belongs to the large OCP1 family. Downregulated by the Fluorescence Recovery Protein (FRP) in low-light, high-light-activated OCP1 binds to the phycobilisomes and performs non-photochemical quenching. Recently discovered families OCP2 and OCP3 remain structurally and functionally underexplored, and no systematic comparative studies have ever been conducted. Here we present two first crystal structures of OCP2 from morphoecophysiologically different cyanobacteria and provide their comprehensive structural, spectroscopic and functional comparison with OCP1, the recently described OCP3 and all-OCP ancestor. Structures enable correlation of spectroscopic signatures with the effective number of hydrogen and discovered here chalcogen bonds anchoring the ketocarotenoid in OCP, as well as with the rotation of the echinenone's ß-ionone ring in the CTD. Structural data also helped rationalize the observed differences in OCP/FRP and OCP/phycobilisome functional interactions. These data are expected to foster OCP research and applications in optogenetics, targeted carotenoid delivery and cyanobacterial biomass engineering.


Bacterial Proteins , Synechocystis , Bacterial Proteins/chemistry , Synechocystis/metabolism , Spectrum Analysis , Carotenoids/chemistry , Phycobilisomes/chemistry
20.
J Sci Food Agric ; 104(5): 3147-3155, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38072645

BACKGROUND: Carotenoids play key roles in photosynthesis and are widely used in foods as natural pigments, antioxidants, and health-promoting compounds. Enhancing carotenoid production in microalgae via biotechnology has become an important area of research. RESULTS: We knocked out the Na+ /Ca2+ antiporter gene slr0681 in Synechocystis sp. PCC 6803 via homologous recombination and evaluated the effects on carotenoid production under normal (NL) and high-light (HL) conditions. On day 7 of NL treatment in calcium ion (Ca2+ )-free medium, the cell density of Δslr0681 decreased by 29% compared to the wild type (WT). After 8 days of HL treatment, the total carotenoid contents decreased by 35% in Δslr0681, and the contents of individual carotenoids were altered: myxoxanthophyll, echinenone, and ß-carotene contents increased by 10%, 50%, and 40%, respectively, while zeaxanthin contents decreased by ~40% in Δslr0681 versus the WT. The expression patterns of carotenoid metabolic pathway genes also differed: ipi expression increased by 1.2- to 8.5-fold, whereas crtO and crtR expression decreased by ~90% and 60%, respectively, in ∆slr0681 versus the WT. In addition, in ∆slr0681, the expression level of psaB (encoding a photosystem I structural protein) doubled, whereas the expression levels of the photosystem II genes psbA2 and psbD decreased by ~53% and 84%, respectively, compared to the WT. CONCLUSION: These findings suggest that slr0681 plays important roles in regulating carotenoid biosynthesis and structuring of the photosystems in Synechocystis sp. This study provides a theoretical basis for the genetic engineering of microalgae photosystems to increase their economic benefits and lays the foundation for developing microalgae germplasm resources with high carotenoid contents. © 2023 Society of Chemical Industry.


Synechocystis , Synechocystis/genetics , Synechocystis/metabolism , Bacterial Proteins/metabolism , Carotenoids/metabolism , beta Carotene/metabolism , Zeaxanthins/metabolism
...